LogoLogo
Go to Syntho.AI
French (AI Translated)
French (AI Translated)
  • Welcome to Syntho
  • Vue d'ensemble
    • About Syntho
    • Get started
      • Introduction to data generation methods
      • Use Case: AI-generated synthetic data
      • Use Case: AI-generated synthetic time series data
      • Use Case: Database de-identification
    • Frequently asked questions
  • Setup Workspaces
    • View workspaces
    • Create a workspace
      • Connect to a database
        • PostgreSQL
        • MySQL / MariaDB
        • Oracle
        • Microsoft SQL Server
        • DB2
        • Databricks
        • Hive
        • SAP Sybase
        • Azure Data Lake Storage (ADLS)
        • Amazon Simple Storage Service (S3)
    • Edit a workspace
    • Delete a workspace
    • Share a workspace
    • Transfer workspace ownership
  • Configurer une tâche de génération de données
    • Configure table settings
    • Configure column settings
      • AI-powered generation
        • Sequence model
          • Prepare your sequence data
      • Mockers
        • Consistent mapping
        • Supported languages
      • Duplicate
      • Exclude
      • Hashing
      • Calculated columns
      • Primary Key / Foreign Key
    • Manage personally identifiable information (PII)
      • Discover and de-identify PII columns
        • Identify PII columns manually
        • Automatic PII discovery with PII scanner
      • Remove columns from PII list
      • Automatic PII discovery and de-identification in free text columns
      • Supported PII & PHI entities
    • Manage foreign keys
      • Foreign key inheritance
      • Add virtual foreign keys
        • Add virtual foreign keys
        • Use foreign key scanner
        • Import foreign keys via JSON
        • Export foreign keys via JSON
      • Delete foreign keys
      • Circular foreign key references
    • Validate and Synchronize workspace
    • View and adjust generation settings
    • Table relationships
      • Verify foreign keys
      • Synthesize individual tables with automatic key matching
      • De-identify PII columns
  • Déployer Syntho
    • Introduction
      • Syntho architecture
      • Requirements
        • Requirements for Docker deployments
        • Requirements for Kubernetes deployments
      • Access Docker images
        • Using internet
        • Without internet
    • Deploy Syntho using Docker
      • Preparations
      • Deploy using Docker Compose
      • Run the application
      • Manually saving logs
    • Deploy Syntho using Kubernetes
      • Preparations
      • Deploy Ray using Helm
        • Troubleshooting
      • Deploy Syntho using Helm
      • Validate the deployment
      • Troubleshooting
      • Upgrading the applications
    • Manage users and access
      • Single Sign-On (SSO) in Azure
      • Manage admin users
      • Manage non-admin users
    • Logs and monitoring
  • Sous-ensemble
    • What is subsetting
    • Verify foreign keys
    • Configure subsetting
  • Syntho API
    • Syntho REST API
Powered by GitBook
On this page
  • Activer le mappage cohérent
  • Avantages de la cartographie cohérente
  • Exemple de mappage cohérent
  • Comprendre la cartographie cohérente
  • Implications en matière de protection de la vie privée
  • Comment fonctionne la cohérence entre les bases de données
  • Ordering and Indexing Considerations
  • Limitations

Was this helpful?

  1. Configurer une tâche de génération de données
  2. Configure column settings
  3. Mockers

Consistent mapping

PreviousMockersNextSupported languages

Last updated 10 months ago

Was this helpful?

Consistent mapping vous permet de générer les mêmes valeurs de données fictives pour un ensemble donné de valeurs de données originales chaque fois que le simulateur est appliqué. Cette fonctionnalité peut s'étendre à différents types de bases de données, ce qui permet d'obtenir des résultats cohérents. Elle est particulièrement utile lorsqu'il s'agit de générer systématiquement les mêmes valeurs fictives à partir des mêmes valeurs d'entrée, par exemple à des fins de test ou de démonstration.


Activer le mappage cohérent

Pour activer le mappage cohérent, ouvrez les configurations de colonne en cliquant sur les paramètres de colonne pour la table sélectionnée. Voir ci-dessous pour savoir comment ouvrir la fenêtre.

Il est également possible de cliquer sur le bouton "ConfigureLe bouton "PII" après une recherche d'IIP ouvre également la fenêtre de configuration des colonnes.

Cliquez sur la case située à côté du bouton "Consistent Mapping"pour permettre une correspondance cohérente avec mocker. Gardez à l'esprit que vous devez sélectionner "Mocker" comme "Generation Method".

Avantages de la cartographie cohérente

Linking data: Même si votre base de données n'impose pas certaines règles sur la façon dont les données sont connectées (comme s'assurer que les adresses électroniques correspondent), la cohérence vous permet de faire correspondre les choses entre elles. Par exemple, vous pouvez vous moquer des noms de famille pour les garder privés, tout en reliant les colonnes connexes.

Keeping variety in data: Si vous avez une liste d'éléments différents, par exemple 20 titres d'emploi dans une colonne, et que vous voulez les mélanger sans perdre la variété globale (toujours autour de 20 titres d'emploi), la cohérence est votre amie. Elle permet de conserver la même variété.

Cependant, n'oubliez pas que si la cohérence permet de conserver la variété, elle ne permet pas forcément de conserver chaque élément unique. La variété n'augmentera pas, mais elle pourrait changer légèrement. Si vous avez besoin que chaque élément corresponde à une nouvelle valeur unique, vous devrez modifier la valeur de l'élément pour qu'il corresponde à une nouvelle valeur unique. Mocker unique.

Matching data across places: Si vous traitez des données réparties dans différentes bases de données, comme des noms à un endroit et des adresses électroniques à un autre, la cohérence vous permet de conserver les mêmes noms partout, même après les avoir rendus privés. De cette façon, tout est toujours correctement mis en correspondance sans que des informations privées soient partagées.

Exemple de mappage cohérent

Supposons que nous ayons une table dans laquelle le prénom "Mavis612" apparaît deux fois. Si vous activez le mappage cohérent, ces deux noms seront mappés au même nom, de manière cohérente, dans toutes les tables. Les illustrations ci-dessous montrent des tables MySQL dans lesquelles les mockers ayant activé la conversion cohérente ont converti le nom "Mavis612" en "Jillian". Veuillez noter que d'autres noms peuvent également être associés à Jillian. Consistent mapping ne suggère pas que seule et unique "Mavis612" sera remplacée par "Jillian".

Comprendre la cartographie cohérente

Consistent mapping equals predictability: Si vous introduisez les mêmes données dans un mocker avec la fonction consistent mapping Si l'on utilise une méthode de travail qui a été validée, on obtient toujours le même résultat. C'est comme si vous utilisiez toujours la même recette pour faire un gâteau ; le résultat est prévisible.

Uniqueness not guaranteed: Ce n'est pas parce que le processus est cohérent que chaque donnée sera différente. Deux entrées distinctes peuvent conduire au même résultat. C'est comme si des ingrédients différents donnaient parfois le même goût à un gâteau.

Implications en matière de protection de la vie privée

No mappings stored: La plateforme Syntho ne stocke aucune information sur la transformation des valeurs d'entrée en valeurs de sortie. Ainsi, vous pouvez voir que "Karl" apparaît 10 fois, mais pas que "Karl" était à l'origine "Immanuel". De plus, vous pouvez modifier la façon dont les valeurs d'entrée sont transformées en valeurs de sortie.

Reduced privacy: Utilisation consistent mapping peut révéler certaines informations, comme la fréquence d'apparition de certaines données. Par exemple, si "Karl" apparaît 10 fois, ce schéma reste le même après le traitement des données.

Comment fonctionne la cohérence entre les bases de données

Whole database application: La cohérence s'applique à l'ensemble de votre base de données, et pas seulement à une seule table. Si vous utilisez consistent mapping pour les noms à la fois dans un Customers et un Employees le même nom d'origine sera toujours mis à jour avec le même nouveau nom dans les deux tables.

Not automatically across multiple jobs: Par défaut, si vous générez des données plus d'une fois, la cohérence est automatiquement reportée d'un travail de génération à l'autre. Si vous ne le souhaitez pas et que vous voulez modifier la cohérence entre les travaux, vous pouvez définir une valeur de départ différente. Vous pouvez le faire en allant dans le menu Workspace Default Settingsen sélectionnant CTRL + ALT + SHIFT + 0, et mettre à jour la seed_value avec une autre valeur entière.

En résumé, la cohérence dans la génération des données permet de s'assurer que vos données se comportent de manière prévisible, tout en assurant l'équilibre entre le maintien de modèles utiles et la protection de la vie privée.

Ordering and Indexing Considerations

Pour garantir un classement précis, il est essentiel que l'application dispose d'un index ou d'une clé primaire dans la table source. En l'absence de ces éléments, l'application effectue par défaut un tri basé sur la première colonne de la table. Toutefois, si la première colonne contient des valeurs dupliquées, l'ordre ne peut être garanti, car il repose sur l'algorithme de tri de la base de données pour traiter les valeurs dupliquées. L'ajout d'un index à la table source résoudra ce problème.

Il est important de noter que l'utilisation du mappage cohérent dans une table sans clés primaires ou index définis peut donner des résultats inattendus. Dans de tels cas, l'application utilise la première colonne pour le tri, qui peut ne pas contenir de valeurs uniques, ce qui conduit à des résultats non déterministes.

Limitations

  • Consistent mapping ne garantit pas la cohérence des données générées sous différentes versions de la plate-forme Syntho.

Ouvrir les paramètres des colonnes
Consistent Mapping
Un exemple de correspondance cohérente