LogoLogo
Go to Syntho.AI
English
English
  • Welcome to Syntho
  • Overview
    • Get started
      • Syntho bootcamp
        • 1. What is Syntho?
        • 2. Introduction data anonymization
        • 3. Connectors & workspace creation
        • 4. PII scan
        • 5. Generators
          • Mockers
          • Maskers
          • AI synthesize
          • Calculated columns
          • Free text de-identification
        • 6. Referential integrity & foreign keys
        • 7. Workspace synchronization & validation
        • 8. Workspace & user management
        • 9. Large workloads​
        • 10. Data pre-processing
        • 11. Continuous Success
      • Prerequisites
      • Sample datasets
      • Introduction to data generators
    • Frequently asked questions
  • Setup Workspaces
    • View workspaces
    • Create a workspace
      • Connect to a database
        • PostgreSQL
        • MySQL / MariaDB
        • Oracle
        • Microsoft SQL Server
        • DB2
        • Databricks
          • Importing Data into Databricks
        • Hive
        • SAP Sybase
        • Azure Data Lake Storage (ADLS)
        • Amazon Simple Storage Service (S3)
      • Workspace modes
    • Edit a workspace
    • Duplicate a workspace
    • Transfer workspace ownership
    • Share a workspace
    • Delete a workspace
    • Workspace default settings
  • Configure a Data Generation Job
    • Configure table settings
    • Configure column settings
      • AI synthesize
        • Sequence model
          • Prepare your sequence data
        • QA report
        • Additional privacy controls
        • Cross-table relationships limitations
      • Mockers
        • Text
          • Supported languages
        • Numeric (integer)
        • Numeric (decimal)
        • Datetime
        • Other
      • Mask
        • Text
        • Numeric (integer)
        • Numeric (decimal)
        • Datetime
        • UUID
      • Duplicate
      • Exclude
      • Consistent mapping
      • Calculated columns
      • Key generators
        • Differences between key generators
      • JSON de-identification
    • Manage personally identifiable information (PII)
      • Privacy dashboard
      • Discover and de-identify PII columns
        • Identify PII columns manually
        • Automatic PII discovery with PII scanner
      • Remove columns from PII list
      • Automatic PII discovery and de-identification in free text columns
      • Supported PII & PHI entities
    • Manage foreign keys
      • Foreign key inheritance
      • Add virtual foreign keys
        • Add virtual foreign keys
        • Use foreign key scanner
        • Import foreign keys via JSON
        • Export foreign keys via JSON
      • Delete foreign keys
    • Validate and Synchronize workspace
    • View and adjust generation settings
  • Deploy Syntho
    • Introduction
      • Syntho architecture
      • Requirements
        • Requirements for Docker deployments
        • Requirements for Kubernetes deployments
      • Access Docker images
        • Online
        • Offline
    • Deploy Syntho using Docker
      • Preparations
      • Deploy using Docker Compose
      • Run the application
      • Manually saving logs
      • Updating the application
    • Deploy Syntho using Kubernetes
      • Preparations
      • Deploy Ray using Helm
        • Upgrading Ray CRDs
        • Troubleshooting
      • Deploy Syntho using Helm
      • Validate the deployment
      • Troubleshooting
      • Saving logs
      • Upgrading the applications
    • Manage users and access
      • Single Sign-On (SSO) in Azure
      • Manage admin users
      • Manage non-admin users
    • Logs and monitoring
      • Does Syntho collect any data?
      • Temporary data storage by application
  • Syntho API
    • Syntho REST API
Powered by GitBook
On this page
  • Apply a JSON de-identification
  • JSON de-identification parameters

Was this helpful?

  1. Configure a Data Generation Job
  2. Configure column settings

JSON de-identification

PreviousDifferences between key generatorsNextManage personally identifiable information (PII)

Last updated 8 days ago

Was this helpful?

Coming Soon

The JSON de-identification feature allows users to apply targeted masking to specific sub-values within complex JSON structures. This feature enables precise and flexible data de-identification based on user-defined JSONPath expressions, helping users efficiently manage sensitive data in nested JSON structures. Below is an overview of how to use this feature, followed by detailed instructions.

Apply a JSON de-identification

  1. Open your Workspace.

  2. On the Table view tab, select the column icon on the top left of the column where you want to apply a JSON de-identification.

  3. Under Column parameters > Generator, select JSON de-identification.

  4. Either:

    • Select the value from the cell to de-identify (The expression input field will then be populated based on this selection), or

    • Enter a JSONPath expression to specify which sub-values within the JSON structure the generator should target.

  5. Assign Sub-Generators:

    • In the Sub-generators settings panel, configure each sub-generator based on the specific attributes you wish to mask. Available generators in sub-generators are , , , , .

    • For instance, apply a numeric range mocker to children.age, a first name mocker to children.first_name, and a last name mocker to children.last_name.

    • Sub-generators are applied in the order they appear in the list; you can reorder them as needed by dragging each item.

  6. Configure Fallback generator:

    • Select a fallback generator from the dropdown menu to apply to values that do not match the defined JSONPath criteria or result in errors. The default option is Duplicate and the other option is Exclude.

  7. Filter by JSON type (Optional):

    • To increase specificity, you can restrict the generator application to particular JSON primitive types (i.e. Number, String, Boolean and Null) to match the data structure requirements.

  8. Save and Preview:

    • After configuring the JSONPath expressions, sub-generators, and fallback options, click Preview to view how the de-identified data will look.

    • Once satisfied, click Confirm to save the settings.

JSON de-identification parameters

JSON de-identification supports selective application of generators to sub-values within JSON data. Users can define complex criteria, such as JSONPath expressions, to target specific elements within JSON arrays and objects. This functionality ensures accurate data masking while preserving the structural integrity of the JSON data.

  • Sub-generators settings: Define multiple sub-generators and apply them sequentially to sub-values based on JSONPath expressions.

  • Fallback generator: Specify a fallback generator to handle values that cannot be masked by the main generator due to errors or mismatches.

  • Expression validation: When a JSONPath expression is entered, users can validate it to see how many JSON elements match the criteria.

  • Filtering by data type: Restrict generator application to specific JSON types (e.g., string, number) to ensure relevance and efficiency.

Duplicate
Mocker
Calculated Columns
Mask
Exclude
Applying JSON de-identification